Highest vectors of representations (total 12) ; the vectors are over the primal subalgebra. | g6+g−1+g−4 | −h6+h4+h1 | −h5−2h4−2h3+h2 | g4+g1+g−6 | g2 | g7 | g3 | g9 | g8 | g12 | g13 | g16 |
weight | 0 | 0 | 0 | 0 | ω1 | ω1 | ω2 | ω2 | ω1+ω2 | ω1+ω2 | ω1+ω2 | ω1+ω2 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 2ψ1−4ψ2 | 0 | 0 | −2ψ1+4ψ2 | ω1+8ψ1−2ψ2 | ω1+6ψ1+2ψ2 | ω2−6ψ1−2ψ2 | ω2−8ψ1+2ψ2 | ω1+ω2+2ψ1−4ψ2 | ω1+ω2 | ω1+ω2 | ω1+ω2−2ψ1+4ψ2 |
Isotypical components + highest weight | V2ψ1−4ψ2 → (0, 0, 2, -4) | V0 → (0, 0, 0, 0) | V−2ψ1+4ψ2 → (0, 0, -2, 4) | Vω1+8ψ1−2ψ2 → (1, 0, 8, -2) | Vω1+6ψ1+2ψ2 → (1, 0, 6, 2) | Vω2−6ψ1−2ψ2 → (0, 1, -6, -2) | Vω2−8ψ1+2ψ2 → (0, 1, -8, 2) | Vω1+ω2+2ψ1−4ψ2 → (1, 1, 2, -4) | Vω1+ω2 → (1, 1, 0, 0) | Vω1+ω2−2ψ1+4ψ2 → (1, 1, -2, 4) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | ω1 −ω1+ω2 −ω2 | ω1 −ω1+ω2 −ω2 | ω2 ω1−ω2 −ω1 | ω2 ω1−ω2 −ω1 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 2ψ1−4ψ2 | 0 | −2ψ1+4ψ2 | ω1+8ψ1−2ψ2 −ω1+ω2+8ψ1−2ψ2 −ω2+8ψ1−2ψ2 | ω1+6ψ1+2ψ2 −ω1+ω2+6ψ1+2ψ2 −ω2+6ψ1+2ψ2 | ω2−6ψ1−2ψ2 ω1−ω2−6ψ1−2ψ2 −ω1−6ψ1−2ψ2 | ω2−8ψ1+2ψ2 ω1−ω2−8ψ1+2ψ2 −ω1−8ψ1+2ψ2 | ω1+ω2+2ψ1−4ψ2 −ω1+2ω2+2ψ1−4ψ2 2ω1−ω2+2ψ1−4ψ2 2ψ1−4ψ2 2ψ1−4ψ2 −2ω1+ω2+2ψ1−4ψ2 ω1−2ω2+2ψ1−4ψ2 −ω1−ω2+2ψ1−4ψ2 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | ω1+ω2−2ψ1+4ψ2 −ω1+2ω2−2ψ1+4ψ2 2ω1−ω2−2ψ1+4ψ2 −2ψ1+4ψ2 −2ψ1+4ψ2 −2ω1+ω2−2ψ1+4ψ2 ω1−2ω2−2ψ1+4ψ2 −ω1−ω2−2ψ1+4ψ2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M2ψ1−4ψ2 | M0 | M−2ψ1+4ψ2 | Mω1+8ψ1−2ψ2⊕M−ω1+ω2+8ψ1−2ψ2⊕M−ω2+8ψ1−2ψ2 | Mω1+6ψ1+2ψ2⊕M−ω1+ω2+6ψ1+2ψ2⊕M−ω2+6ψ1+2ψ2 | Mω2−6ψ1−2ψ2⊕Mω1−ω2−6ψ1−2ψ2⊕M−ω1−6ψ1−2ψ2 | Mω2−8ψ1+2ψ2⊕Mω1−ω2−8ψ1+2ψ2⊕M−ω1−8ψ1+2ψ2 | Mω1+ω2+2ψ1−4ψ2⊕M−ω1+2ω2+2ψ1−4ψ2⊕M2ω1−ω2+2ψ1−4ψ2⊕2M2ψ1−4ψ2⊕M−2ω1+ω2+2ψ1−4ψ2⊕Mω1−2ω2+2ψ1−4ψ2⊕M−ω1−ω2+2ψ1−4ψ2 | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | Mω1+ω2−2ψ1+4ψ2⊕M−ω1+2ω2−2ψ1+4ψ2⊕M2ω1−ω2−2ψ1+4ψ2⊕2M−2ψ1+4ψ2⊕M−2ω1+ω2−2ψ1+4ψ2⊕Mω1−2ω2−2ψ1+4ψ2⊕M−ω1−ω2−2ψ1+4ψ2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M2ψ1−4ψ2 | 2M0 | M−2ψ1+4ψ2 | Mω1+8ψ1−2ψ2⊕M−ω1+ω2+8ψ1−2ψ2⊕M−ω2+8ψ1−2ψ2 | Mω1+6ψ1+2ψ2⊕M−ω1+ω2+6ψ1+2ψ2⊕M−ω2+6ψ1+2ψ2 | Mω2−6ψ1−2ψ2⊕Mω1−ω2−6ψ1−2ψ2⊕M−ω1−6ψ1−2ψ2 | Mω2−8ψ1+2ψ2⊕Mω1−ω2−8ψ1+2ψ2⊕M−ω1−8ψ1+2ψ2 | Mω1+ω2+2ψ1−4ψ2⊕M−ω1+2ω2+2ψ1−4ψ2⊕M2ω1−ω2+2ψ1−4ψ2⊕2M2ψ1−4ψ2⊕M−2ω1+ω2+2ψ1−4ψ2⊕Mω1−2ω2+2ψ1−4ψ2⊕M−ω1−ω2+2ψ1−4ψ2 | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | Mω1+ω2−2ψ1+4ψ2⊕M−ω1+2ω2−2ψ1+4ψ2⊕M2ω1−ω2−2ψ1+4ψ2⊕2M−2ψ1+4ψ2⊕M−2ω1+ω2−2ψ1+4ψ2⊕Mω1−2ω2−2ψ1+4ψ2⊕M−ω1−ω2−2ψ1+4ψ2 |