Processing math: 100%
Subalgebra A22A16
30 out of 61
Computations done by the calculator project.

Subalgebra type: A22 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A21 .
Centralizer: A31 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A22
Basis of Cartan of centralizer: 2 vectors: (0, 1, -2, -2, -1, 0), (1, 0, 0, 1, 0, -1)
Contained up to conjugation as a direct summand of: A22+A31 .

Elements Cartan subalgebra scaled to act by two by components: A22: (1, 2, 2, 2, 2, 1): 4, (0, 0, 0, -1, -2, -1): 4
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: g17+g21, g15+g5
Positive simple generators: g21+g17, g5+g15
Cartan symmetric matrix: (11/21/21)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4224)
Decomposition of ambient Lie algebra: 4Vω1+ω22Vω22Vω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+6ψ1+2ψ2Vω1+8ψ12ψ2Vω1+ω22ψ1+4ψ2V2ψ1+4ψ22Vω1+ω22V0Vω1+ω2+2ψ14ψ2V2ψ14ψ2Vω28ψ1+2ψ2Vω26ψ12ψ2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 12) ; the vectors are over the primal subalgebra.g6+g1+g4h6+h4+h1h52h42h3+h2g4+g1+g6g2g7g3g9g8g12g13g16
weight0000ω1ω1ω2ω2ω1+ω2ω1+ω2ω1+ω2ω1+ω2
weights rel. to Cartan of (centralizer+semisimple s.a.). 2ψ14ψ2002ψ1+4ψ2ω1+8ψ12ψ2ω1+6ψ1+2ψ2ω26ψ12ψ2ω28ψ1+2ψ2ω1+ω2+2ψ14ψ2ω1+ω2ω1+ω2ω1+ω22ψ1+4ψ2
Isotypic module decomposition over primal subalgebra (total 11 isotypic components).
Isotypical components + highest weightV2ψ14ψ2 → (0, 0, 2, -4)V0 → (0, 0, 0, 0)V2ψ1+4ψ2 → (0, 0, -2, 4)Vω1+8ψ12ψ2 → (1, 0, 8, -2)Vω1+6ψ1+2ψ2 → (1, 0, 6, 2)Vω26ψ12ψ2 → (0, 1, -6, -2)Vω28ψ1+2ψ2 → (0, 1, -8, 2)Vω1+ω2+2ψ14ψ2 → (1, 1, 2, -4)Vω1+ω2 → (1, 1, 0, 0)Vω1+ω22ψ1+4ψ2 → (1, 1, -2, 4)
Module label W1W2W3W4W5W6W7W8W9W10W11
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g6+g1+g4
Cartan of centralizer component.
h6+h4+h1
h52h42h3+h2
g4+g1+g6
g2
g14
g9
g7
g18
g3
g3
g18
g7
g9
g14
g2
g8
g10
g20
g6+g4
g6+g1
g19
2g11
g16
Semisimple subalgebra component.
g13g12
g5g15
g21+g17
h62h5h4
h62h52h42h32h2h1
g17g21
2g15+2g5
g12g13
g12
g15
g21
h6+h5+h4
h6+h5+h4+h3+h2+h1
g21
2g15
g12
g16
g11
g19
g4g6
g1g6
g20
2g10
g8
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000ω1
ω1+ω2
ω2
ω1
ω1+ω2
ω2
ω2
ω1ω2
ω1
ω2
ω1ω2
ω1
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ψ14ψ202ψ1+4ψ2ω1+8ψ12ψ2
ω1+ω2+8ψ12ψ2
ω2+8ψ12ψ2
ω1+6ψ1+2ψ2
ω1+ω2+6ψ1+2ψ2
ω2+6ψ1+2ψ2
ω26ψ12ψ2
ω1ω26ψ12ψ2
ω16ψ12ψ2
ω28ψ1+2ψ2
ω1ω28ψ1+2ψ2
ω18ψ1+2ψ2
ω1+ω2+2ψ14ψ2
ω1+2ω2+2ψ14ψ2
2ω1ω2+2ψ14ψ2
2ψ14ψ2
2ψ14ψ2
2ω1+ω2+2ψ14ψ2
ω12ω2+2ψ14ψ2
ω1ω2+2ψ14ψ2
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
ω1+ω22ψ1+4ψ2
ω1+2ω22ψ1+4ψ2
2ω1ω22ψ1+4ψ2
2ψ1+4ψ2
2ψ1+4ψ2
2ω1+ω22ψ1+4ψ2
ω12ω22ψ1+4ψ2
ω1ω22ψ1+4ψ2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ψ14ψ2M0M2ψ1+4ψ2Mω1+8ψ12ψ2Mω1+ω2+8ψ12ψ2Mω2+8ψ12ψ2Mω1+6ψ1+2ψ2Mω1+ω2+6ψ1+2ψ2Mω2+6ψ1+2ψ2Mω26ψ12ψ2Mω1ω26ψ12ψ2Mω16ψ12ψ2Mω28ψ1+2ψ2Mω1ω28ψ1+2ψ2Mω18ψ1+2ψ2Mω1+ω2+2ψ14ψ2Mω1+2ω2+2ψ14ψ2M2ω1ω2+2ψ14ψ22M2ψ14ψ2M2ω1+ω2+2ψ14ψ2Mω12ω2+2ψ14ψ2Mω1ω2+2ψ14ψ2Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω22ψ1+4ψ2Mω1+2ω22ψ1+4ψ2M2ω1ω22ψ1+4ψ22M2ψ1+4ψ2M2ω1+ω22ψ1+4ψ2Mω12ω22ψ1+4ψ2Mω1ω22ψ1+4ψ2
Isotypic characterM2ψ14ψ22M0M2ψ1+4ψ2Mω1+8ψ12ψ2Mω1+ω2+8ψ12ψ2Mω2+8ψ12ψ2Mω1+6ψ1+2ψ2Mω1+ω2+6ψ1+2ψ2Mω2+6ψ1+2ψ2Mω26ψ12ψ2Mω1ω26ψ12ψ2Mω16ψ12ψ2Mω28ψ1+2ψ2Mω1ω28ψ1+2ψ2Mω18ψ1+2ψ2Mω1+ω2+2ψ14ψ2Mω1+2ω2+2ψ14ψ2M2ω1ω2+2ψ14ψ22M2ψ14ψ2M2ω1+ω2+2ψ14ψ2Mω12ω2+2ψ14ψ2Mω1ω2+2ψ14ψ2Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2Mω1+ω22ψ1+4ψ2Mω1+2ω22ψ1+4ψ2M2ω1ω22ψ1+4ψ22M2ψ1+4ψ2M2ω1+ω22ψ1+4ψ2Mω12ω22ψ1+4ψ2Mω1ω22ψ1+4ψ2

Semisimple subalgebra: W_{9}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (333.33, 366.67)
1: (0.00, 1.00, 0.00, 0.00): (266.67, 433.33)
2: (0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 263803 arithmetic operations while solving the Serre relations polynomial system.